
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1063
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

A Performance Criteria for parallel
Computation on basis of block size using

CUDA Architecture
Ashis Kumar Dash

Abstract — GPU based on CUDA Architecture developed by NVIDIA is a high performance computing device.
Multiplication of matrices of large order can be computed in few seconds using GPU based on CUDA Architecture. A
modern GPU consists of 16 highly threaded streaming multiprocessors (SMs). GPU named Fermi consists of 32
SMs. These are computing intensive devices. GPUs have been found to be the best platform for massive data
parallelism. CUDA architecture is based on the heterogeneous platform comprising of both CPU and GPU that offers
enormous potential to solve complex harder problems with high speed. In most applications the sequential part of a
program is executed using CPU and numeric intensive part on GPU. But mere execution of numeric intensive part on
GPU will not increase the performance of the computation. Since GPU consists of highly threaded multiprocessors,
threads must be well organised into Grids and Grid into blocks to maximize performance of parallel computation,
depending upon architecture of the GPU. In this paper an organization of threads of a particular GPU is discussed
and block size is determined to maximize the performance of parallel computation through matrix multiplication.

Keywords: CUDA, GPU, SM, Kernel, Grid, Block, threads, warps, matrix multiplication, parallel computation

—————————— ——————————

1 INTRODUCTION

NVIDIA developed CUDA architecture is a platform for
massive data parallelism.GPU performs the computation
part in parallel using its highly threaded multi-processors.
SMs produce threads which perform computation in
parallel. This generation and assignment of threads is user
defined. User has to write the programme to perform this.
To write the program for GPU computation, one has to
understand the GPU architecture well along with CUDA
architecture. Mere program writing will not optimize the
performance. User has to write the program based on
architecture to optimize the time complexity. Therefore
GPU generated threads are grouped into Grids, Grid into
Blocks. Parallel computation of data is assigned to threads
in block by block. Therefore Grid and block size play an
important role to optimize the time complexity in parallel
computation.

2 NVIDIA GPU Architecture
A modern GPU is organized into 16 highly threaded
streaming multiprocessors (SMs). A pair of SMs forms a
building block of a GPU. Each SM has 8 streaming
processors (SPs). So a GPU consists of 128 SPs. Each SP
has a multiply- add (MAD) unit, and an additional
multiply unit, all running at 1.35 gigahertz. Newly

developed GPU Fermi has 32 SMs. So Fermi consists of
256 SPs.

 Architecture of a CUDA-capable GPU

3 CUDA Threads
The fundamental means of parallel execution in CUDA is
fine-grained data parallel threads. Launching a CUDA
kernel creates a grid of threads. The kernel function
specifies the statements that are executed by each
individual thread created when the kernel is launched at
run-time.

3.1 CUDA Thread organization
Kernel function is a device function which is executed in
GPU. Once kernel is invoked it generates grid of threads.
All threads execute the same kernel function. These
threads have unique coordinates to distinguish

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1064
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

themselves from each other and to identify the
appropriate portion of the data to process. These threads
are organized into a two-level hierarchy using unique
coordinates, called blockId and threadId, assigned to them
by the CUDA run time system. The blockId and threadId
appear as built-in variables that are initialized by the run-
time system and can be accessed within the kernel
functions. When a thread executes the kernel function,
references to the blockId and threaded variables return
the appropriate values that form coordinates of the
thread.

3.2 Thread assignment
CUDA run-time system generates the grid of threads once
a kernel is launched. These threads are assigned to
execution resources on a block by block basis. In the
GeForce-8 series hardware, the execution resources are
organized into Streaming Multiprocessors. For example,
the GeForce 8800GTX implementation has 16 Streaming
Multiprocessors. Up to 8 blocks can be assigned to each
SM in the GeForce 8800GTX design as long as there are
enough resources to satisfy the needs of all the blocks. In
situations where there is an insufficient amount of any
one or more types of resources needed for the
simultaneous execution of 8 blocks, the CUDA run time
automatically reduces the number of blocks assigned to
each Streaming Multiprocessor until the resource usage is
under the limit. With 16 Streaming Multiprocessors in a
GeForc 8800 GTX processor, up to 128 blocks can be
simultaneously assigned to Streaming Multiprocessors.
Most grids contain much more than 128 blocks. The run-
time system maintains a list of blocks that need to execute
and assigns new blocks to Streaming Multiprocessors as
they complete the execution of blocks previously assigned
to them. In the GeForce 8800GTX design, up to 768
threads can be assigned to each SM. This could be in the
form of 3 blocks of 256 threads each, 6 blocks of 128
threads each, etc. It should be obvious that 12 blocks of 64
threads each are not a viable option since each SM can
only accommodate up to 8 blocks. With 16 SMs in
GeForce 8800GTX, there can be up to 12,288 threads
simultaneously residing in SMs for execution. So there is a
limitation of assigning number of threads to a SM.

 3.3 Thread scheduling
In GeForce 8800GTX once a block is assigned to a
Streaming Multiprocessor, it is further divided into 32-
thread units called Warps. The warps are implementation
specific and can vary from one implementation to
another. Warps are not part of the CUDA language
definition. Warps are unit of thread scheduling.
Knowledge of warp helps to optimize the performance of

CUDA applications. Suppose a block has 256 threads.
Then it has 256/32 =8 wraps. A SM has maximum 768
threads. That implies up to 24 warps can reside inside a
SM at any point of time. For the GeForce-8 series
processors, there can be up to 24 warps residing in each
Streaming Multiprocessor at any point in time. The SMs
are designed such that only one of these warps will be
actually executed by the hardware at any point in time. A
legitimate question is why we need to have so many
warps in an SM considering the fact that it executes only
one of them at any point of time. The answer is that this is
how these processors efficiently execute long latency
operations such as access to the global memory. When an
instruction executed by threads in a warp needs to wait
for the result of a previously initiated long-latency
operation, the warp is placed into a waiting area. One of
the other resident warps who are no longer waiting for
results is selected for execution. If more than one warp is
ready for execution, a priority mechanism is used to select
one for execution.

4 Problem Definition
Once kernel is lunched a grid of threads is generated.
These threads are grouped into blocks. Parallel
computation is performed by block of threads. Arbitrary
block size will not improve the performance. To optimize
the performance, block size should be well defined. But
decision on block size is Architecture dependant.

5 CUDA Architecture based parallel matrix

multiplication
Let M, N and P are three square matrices where M & N
are input matrices and P is product matrix. The main
steps in host code for matrix multiplication are illustrated
below.

 int main() {
1. // Allocate and initialize the matrices M, N, P

 // I/O to read the input matrices M and N
....

 2. // M * N on the device
 MatrixMulOnDevice(M, N, P, width);
 3. // I/O to write the output matrix P
 // Free matrices M, N, P

...
return 0;
}

The main program first allocates the M, N, and P matrices
and then performs I/O to read M and N, in Part 1. Part 2
performs the matrix multiplication. After completing the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1065
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

matrix multiplication in part 3, main function performs
the I/O to write the product matrix P and free all the
allocated matrices. The part 2 is the main focus. It calls a
function, MatrixMulOnDevice() to perform matrix
multiplication. The host code calls matrixMulOnDevice(),
which is also executed on the host. It is responsible for
allocating device memory, performing data transfers, and
then activating the kernel that performs the actual matrix
multiplication.

6 System Specification
For this report, the Machine that has been used has the
following specification. It is a Hp xw8600 workstation. Its
core is Intel Xeon E5405, core clock: 2000 MHz, FSB:
1333MHz, L2:12MB, Multiplier 6, socket LGA771,Data
width:64 bit and its family is Harpertown. This machine
possesses NVIDIA GPU, Quadro FX 3700. Its core is G92
with core clock: 500 MHz, Memory clock: 800 MHz,
Memory size: 512 MIB, Memory type: 256- bit GDDR3,
Memory bandwidth: 51.2, 112 number of streaming
processors, active block capacity 768 and warp: 32
threads.

7 Performance of parallel matrix multi-

plication on basis of block size
The parallel matrix multiplication has been executed on
the machine as described in subsection 6 using the
algorithm section 5. The elements of the matrices are
randomly generated floating point numbers of single
precision. Here the variable block size has been taken to
study the effect of block size. The execution time has been
taken for matrix sizes, 1024x1024 and 1012x1012. This
time, which is average of 100 readings, consists of time for
transferring data to device and performing matrix
multiplication on device. The aim of taking two different
matrix sizes is to study the effect of block sizes those are
divisors of matrix sizes. In this case 16 and 22 are divisor
of 1024 and 1012 respectively. Here execution time is
considered up to block size 22(22x22) as the maximum
capacity of a block is 512 threads. A block size of 23(23x23)
exceeds the number 512.Table-1 contains details of
execution time.

 TABLE-1

Block
size

Execution
time(sec) for
Matrix Size
(1024X1024)

Execution
time(sec) for
Matrix Size
(1012X1012

2 1.08 1.01
3 0.71 0.56
4 0.51 0.47
5 0.41 0.37
6 0.34 0.29
7 0.29 0.25
8 0.27 0.23
9 0.23 0.21
10 0.215 0.18
11 0.20 0.17
12 0.185 0.16
13 0.17 0.14
14 0.16 0.14
15 0.15 0.12
16 0.065 0.095
17 0.135 0.12
18 0.135 0.12
19 0.12 0.115
20 0.11 0.105
21 0.11 0.105

Graph-1 below shows the variation of execution time.
Blue and red curve are representing the execution time for
matrix size 1024x1024 and 1012x1012 respectively. It
decreases as block size increases from 2 to 16. It also
decreases as block size increases from 17 to 22, but time
for block size 17 to 22 are greater than the execution time
of block size 16.

7.1 Observation
From graph 1 of the table 4, it is observed that block size
of 16 has lest execution time. It is also observed that the
execution time for block size 16 is not only lest but also its
variation from execution time of block size 15 and 17 is
significant. This is because of warp mechanism of CUDA
architecture. So block size 16 is best choice for matrix
multiplication on CUDA as long as the maximum capacity
of a block is 512.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1066
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 GRAPH-1

8 Limitation
This result is achieved from a particular system consists of
particular GPU. This conclusion is not machine invariant.
Using matrix multiplication as platform for parallel
computation this conclusion is drawn. Data used for
matrix multiplication is also specific (generated randomly
up to some finite decimal places).

9 Conclusion
To optimize the performance of GPU, decision on block
size is vital. This block size is machine dependant.
Depending on architecture of GPU one has to decide the
block size. Right block size for machine will optimize the
performance.

10 Future Work
Above conclusion is architecture specific. No
generalization of block size is done. Depending upon
architecture, generalized optimum block size may be
obtained which may be used for designing GPU
architecture.

 References
[1] NVIDIA CUDA Programming Guide. Version 3
http://developer.download.nvidia.com/compute/cuda/3_0
/toolkit/docs/NVIDIA_CUDA_Program
[2] Alan Kaminsky, http://www.cs.rit.edu/
ark/spring2009/736/ 4005-736 Parallel Computing II, GPU
Computing: Introduction to GPGPU and CUDA.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1067
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

IJSER

http://www.ijser.org/

	1 Introduction

