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Abstract — GPU based on CUDA Architecture developed by NVIDIA is a high performance computing device. 
Multiplication of matrices of large order can be computed in few seconds using GPU based on CUDA Architecture.  A 
modern GPU consists of 16 highly threaded streaming multiprocessors (SMs). GPU named Fermi consists of 32 
SMs. These are computing intensive devices. GPUs have been found to be the best platform for massive data 
parallelism. CUDA architecture is based on the heterogeneous platform comprising of both CPU and GPU that offers 
enormous potential to solve complex harder problems with high speed. In most applications the sequential part of a 
program is executed using CPU and numeric intensive part on GPU. But mere execution of numeric intensive part on 
GPU will not increase the performance of the computation. Since GPU consists of highly threaded multiprocessors, 
threads must be well organised into Grids and Grid into blocks to maximize performance of parallel computation, 
depending upon architecture of the GPU. In this paper an organization of threads of a particular GPU is discussed 
and block size is determined to maximize the performance of parallel computation through matrix multiplication.  
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1 INTRODUCTION 

NVIDIA developed CUDA architecture is a platform for 
massive data parallelism.GPU performs the computation 
part in parallel using its highly threaded multi-processors. 
SMs produce threads which perform computation in 
parallel. This generation and assignment of threads is user 
defined. User has to write the programme to perform this. 
To write the program for GPU computation, one has to 
understand the GPU architecture well along with CUDA 
architecture. Mere program writing will not optimize the 
performance. User has to write the program based on 
architecture to optimize the time complexity. Therefore 
GPU generated threads are grouped into Grids, Grid into 
Blocks. Parallel computation of data is assigned to threads 
in block by block. Therefore Grid and block size play an 
important role to optimize the time complexity in parallel 
computation. 
 
2 NVIDIA GPU Architecture  
A modern GPU is organized into 16 highly threaded 
streaming multiprocessors (SMs). A pair of SMs forms a 
building block of a GPU. Each SM has 8 streaming 
processors (SPs). So a GPU consists of 128 SPs. Each SP 
has a multiply- add (MAD) unit, and an additional 
multiply unit, all running at 1.35 gigahertz. Newly 

developed GPU Fermi has 32 SMs. So Fermi consists of 
256 SPs. 
 

 
                       Architecture of a CUDA-capable GPU 

 
3 CUDA Threads 
The fundamental means of parallel execution in CUDA is 
fine-grained data parallel threads. Launching a CUDA 
kernel creates a grid of threads. The kernel function 
specifies the statements that are executed by each 
individual thread created when the kernel is launched at 
run-time. 
 
3.1 CUDA Thread organization 
Kernel function is a device function which is executed in 
GPU. Once kernel is invoked it generates grid of threads. 
All threads execute the same kernel function. These 
threads have unique coordinates to distinguish 
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themselves from each other and to identify the 
appropriate portion of the data to process. These threads 
are organized into a two-level hierarchy using unique 
coordinates, called blockId and threadId, assigned to them 
by the CUDA run time system. The blockId and threadId 
appear as built-in variables that are initialized by the run- 
time system and can be accessed within the kernel 
functions. When a thread executes the kernel function, 
references to the blockId and threaded variables return 
the appropriate values that form coordinates of the 
thread. 
 
3.2 Thread assignment 
CUDA run-time system generates the grid of threads once 
a kernel is launched. These threads are assigned to 
execution resources on a block by block basis. In the 
GeForce-8 series hardware, the execution resources are 
organized into Streaming Multiprocessors. For example, 
the GeForce 8800GTX implementation has 16 Streaming 
Multiprocessors. Up to 8 blocks can be assigned to each 
SM in the GeForce 8800GTX design as long as there are 
enough resources to satisfy the needs of all the blocks. In 
situations where there is an insufficient amount of any 
one or more types of resources needed for the 
simultaneous execution of 8 blocks, the CUDA run time 
automatically reduces the number of blocks assigned to 
each Streaming Multiprocessor until the resource usage is 
under the limit. With 16 Streaming Multiprocessors in a 
GeForc 8800 GTX processor, up to 128 blocks can be 
simultaneously assigned to Streaming Multiprocessors. 
Most grids contain much more than 128 blocks. The run-
time system maintains a list of blocks that need to execute 
and assigns new blocks to Streaming Multiprocessors as 
they complete the execution of blocks previously assigned 
to them. In the GeForce 8800GTX design, up to 768 
threads can be assigned to each SM. This could be in the 
form of 3 blocks of 256 threads each, 6 blocks of 128 
threads each, etc. It should be obvious that 12 blocks of 64 
threads each are not a viable option since each SM can 
only accommodate up to 8 blocks. With 16 SMs in 
GeForce 8800GTX, there can be up to 12,288 threads 
simultaneously residing in SMs for execution. So there is a 
limitation of assigning number of threads to a SM. 
 

       3.3 Thread scheduling 
In GeForce 8800GTX once a block is assigned to a 
Streaming Multiprocessor, it is further divided into 32-
thread units called Warps. The warps are implementation 
specific and can vary from one implementation to 
another. Warps are not part of the CUDA language 
definition. Warps are unit of thread scheduling. 
Knowledge of warp helps to optimize the performance of 

CUDA applications. Suppose a block has 256 threads. 
Then it has 256/32 =8 wraps. A SM has maximum 768 
threads. That implies up to 24 warps can reside inside a 
SM at any point of time. For the GeForce-8 series 
processors, there can be up to 24 warps residing in each 
Streaming Multiprocessor at any point in time. The SMs 
are designed such that only one of these warps will be 
actually executed by the hardware at any point in time. A 
legitimate question is why we need to have so many 
warps in an SM considering the fact that it executes only 
one of them at any point of time. The answer is that this is 
how these processors efficiently execute long latency 
operations such as access to the global memory. When an 
instruction executed by threads in a warp needs to wait 
for the result of a previously initiated long-latency 
operation, the warp is placed into a waiting area. One of 
the other resident warps who are no longer waiting for 
results is selected for execution. If more than one warp is 
ready for execution, a priority mechanism is used to select 
one for execution. 
 
4 Problem Definition 
Once kernel is lunched a grid of threads is generated. 
These threads are grouped into blocks. Parallel 
computation is performed by block of threads. Arbitrary 
block size will not improve the performance. To optimize 
the performance, block size should be well defined. But 
decision on block size is Architecture dependant.    

 
5 CUDA Architecture based parallel matrix 

multiplication 
Let M, N and P are three square matrices where M & N 
are input matrices and P is product matrix. The main 
steps in host code for matrix multiplication are illustrated 
below. 
 

        int main() { 
1. // Allocate and initialize the matrices M, N, P 

            // I/O to read the input matrices M and N 
.... 

         2. // M * N on the device 
             MatrixMulOnDevice(M, N, P, width); 
         3. // I/O to write the output matrix P 
              // Free matrices M, N, P 

... 
return 0; 
} 
 

The main program first allocates the M, N, and P matrices 
and then performs I/O to read M and N, in Part 1. Part 2 
performs the matrix multiplication. After completing the 
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matrix multiplication in part 3, main function performs 
the I/O to write the product matrix P and free all the 
allocated matrices. The part 2 is the main focus. It calls a 
function, MatrixMulOnDevice() to perform matrix 
multiplication. The host code calls matrixMulOnDevice(), 
which is also executed on the host. It is responsible for 
allocating device memory, performing data transfers, and 
then activating the kernel that performs the actual matrix 
multiplication. 

 
6 System Specification 
For this report, the Machine that has been used has the 
following specification. It is a Hp xw8600 workstation. Its 
core is Intel Xeon E5405, core clock: 2000 MHz, FSB: 
1333MHz, L2:12MB, Multiplier 6, socket LGA771,Data 
width:64 bit and its family is Harpertown. This machine 
possesses NVIDIA GPU, Quadro FX 3700. Its core is G92 
with core clock: 500 MHz, Memory clock: 800 MHz, 
Memory size: 512 MIB, Memory type: 256- bit GDDR3, 
Memory bandwidth: 51.2, 112 number of streaming 
processors, active block capacity 768 and warp: 32 
threads. 

 
7 Performance of parallel matrix multi- 

plication on basis of block size 
The parallel matrix multiplication has been executed on 
the machine as described in subsection 6 using the 
algorithm section 5. The elements of the matrices are 
randomly generated floating point numbers of single 
precision. Here the variable block size has been taken to 
study the effect of block size. The execution time has been 
taken for matrix sizes, 1024x1024 and 1012x1012. This 
time, which is average of 100 readings, consists of time for 
transferring data to device and performing matrix 
multiplication on device. The aim of taking two different 
matrix sizes is to study the effect of block sizes those are 
divisors of matrix sizes. In this case 16 and 22 are divisor 
of 1024 and 1012 respectively. Here execution time is 
considered up to block size 22(22x22) as the maximum 
capacity of a block is 512 threads. A block size of 23(23x23) 
exceeds the number 512.Table-1 contains details of 
execution time. 
 
 
 
 
 
 
 
 
 

 
                                               TABLE-1 

 
Block 
size 

Execution 
time(sec) for 
Matrix Size 
(1024X1024) 

Execution 
time(sec) for 
Matrix Size 
(1012X1012 

2  1.08 1.01 
3  0.71 0.56 
4  0.51 0.47 
5   0.41 0.37 
6   0.34 0.29 
7  0.29  0.25 
8  0.27  0.23 
9  0.23  0.21 
10  0.215  0.18 
11  0.20  0.17 
12  0.185 0.16 
13  0.17  0.14 
14  0.16 0.14 
15  0.15  0.12 
16  0.065  0.095 
17  0.135  0.12 
18  0.135  0.12 
19  0.12 0.115 
20  0.11  0.105 
21  0.11  0.105 

 
 

Graph-1 below shows the variation of execution time. 
Blue and red curve are representing the execution time for 
matrix size 1024x1024 and 1012x1012 respectively. It 
decreases as block size increases from 2 to 16. It also 
decreases as block size increases from 17 to 22, but time 
for block size 17 to 22 are greater than the execution time 
of block size 16.  
 
7.1 Observation 
From graph 1 of the table 4, it is observed that block size 
of 16 has lest execution time. It is also observed that the 
execution time for block size 16 is not only lest but also its 
variation from execution time of block size 15 and 17 is 
significant. This is because of warp mechanism of CUDA 
architecture. So block size 16 is best choice for matrix 
multiplication on CUDA as long as the maximum capacity 
of a block is 512. 
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                                    GRAPH-1 
 
 

                        
 

8 Limitation 
This result is achieved from a particular system consists of 
particular GPU. This conclusion is not machine invariant. 
Using matrix multiplication as platform for parallel 
computation this conclusion is drawn. Data used for 
matrix multiplication is also specific (generated randomly 
up to some finite decimal places). 

 
 
 
 

 
 

9 Conclusion 
To optimize the performance of GPU, decision on block 
size is vital. This block size is machine dependant. 
Depending on architecture of GPU one has to decide the 
block size. Right block size for machine will optimize the 
performance. 

 
10 Future Work 
Above conclusion is architecture specific. No 
generalization of block size is done. Depending upon 
architecture, generalized optimum block size may be 
obtained which may be used for designing GPU 
architecture.    
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